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The optimal values ofQ andDv sDv;v−Vd for cooling a pure electron plasma with a microwave bath
have been calculated. An electron plasma, which has no internal degree of freedom, cannot be cooled below the
temperature of a heat bath. However, longitudinal cooling can be achieved by energy transfer from the poorly
cooled longitudinal degree of freedom to the well-cooledsby synchrotron radiationd transverse degree of
freedom. To do this, a microwave bath is introduced to the electron plasma. A microwave tuned to a frequency
below the gyrofrequency forces electrons moving towards the microwave to absorb a microwave photon. The
electrons move up one in Landau state and then lose their longitudinal momenta. In this process, the longitu-
dinal temperature of the electron plasma decreases. On the basis that the perpendicular temperature is below
the Landau temperature of the plasma, we set up two level transition equations and then derive a Fokker-
Planck equation from them. With the aid of a finite element methodsFEMd code for the equation, the cooling
times for several values of the magnetic field, the microwave cavitysQd, and the relative detuning frequency
from the gyrofrequencysDvd are calculated. Thus optimal values of the microwave cavity and the detuning
frequency for longitudinal cooling of a strongly magnetized electron plasma with a microwave bath have been
found. By applying these optimal values with an appropriate microwave intensity, the best cooling can be
obtained. For an electron plasma magnetized to 10 T, the cooling time to the solid state is approximately two
hours.
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I. INTRODUCTION

The concept of crystalline non-neutral plasma, regarded
as a new state of matter, has been studied for a variety of
fundamental and applied physics areas, including the study
of space-charge-dominated beams, the study of Coulomb
crystals, the realization of high luminosity ion colliders, the
application to ultrahigh resolution nuclear experiments and
to the atomic physics research, etc. Crystallization occurs as
non-neutral plasmas and beams are cooled below the transi-
tion temperature. In fact, as seen in many Penning trap ex-
periments, the non-neutral plasmas has three different
phases: fluid, fcc, and bccf1g. Crystallization in one dimen-
sion has been observed in the beams at the Aarhus accelera-
tor f2g, in agreement with calculationsf3g, and crystallization
in three dimension has been observed in the ion Penning trap
at NIST f4g and in dusty plasmasf5g.

In high energy physics, Penning traps and antiparticle
storage rings have been used for experimental tests of the
CPT theoremf6,7g, which predicts equivalence of various
physical parameters such as masses, charge-to-mass ratio,
magnetic moments, and gyromagnetic ratio for particles and
antiparticlesf8g. Charged particles can be confined perfectly
in an ideal cylindrically symmetric trap with a uniform axial
magnetic fieldf9,10g, which is the basic setup of the Penning
trap f11g. This approach, the use of Penning trap, has been
favored and widely used because the particle can be cooled
down to a temperature of the order of 10 mK. Penning traps
at CERN have been used to capture antiparticles for high-

resolution measurements for proton mass and for mass spec-
trometry of nucleif12g.

Laser coolingf13–15g has been the primary approach to-
wards obtaining ultra cool beamsf16,17g and plasmas
f18,19g. A laser that is tuned to a frequency below the reso-
nant frequency of the ion is directed at the ionic plasma. Ions
moving towards the laser beams see an up-shifted laser
beam, and thus can absorb the light. Subsequently they spon-
taneously emit a photon isotropically. Thus, in the full pro-
cess, they lose momentum by recoil. This leads to cooling.
Such a method naturally works only for ions, not electrons or
protons, as they have the internal resonances needed for nar-
row absorption. For non-ionic beams, electron cooling has
been used, but such cooling has not produced ultracool
beamsf20g.

In the case of a strongly magnetized plasma, the cyclotron
frequency is much larger than the plasma frequency which is
the main frequency of the longitudinal oscillation. The fast
gyromotion compared to the longitudinal motion implies that
the total action of the gyromotion is an adiabatic invariant
f21g. The existence of the invariant promises that the longi-
tudinal and transverse temperatures can be well-defined
separately in the system and that all the thermodynamic po-
tentials should be the functions of the two temperaturesf22g.

For this reason we already investigated the phase transi-
tion of strongly magnetized electron plasmas in Penning
traps, and we concluded that the phase transition can occur
on the condition that longitudinal temperature is below a
certain value irrespective of transverse temperaturef23g.
Now the question is how to decrease the longitudinal tem-
perature to the critical value. We suggest a microwave cool-
ing method as one of the possible ways. Applying a tuned
microwave into the longitudinal direction, the longitudinal
energy can be reduced and then the temperature can be
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dropped down below the critical value. This means that the
electron plasma crystallization can be achieved. In the fol-
lowing section we briefly explain the thermodynamics and
the guiding center dynamics of the strongly magnetized plas-
mas, and show how their phase responds to the longitudinal
temperature. In the next section we suggest how to reduce
the longitudinal temperature and the result is shown.

II. THERMAL EQUILIBRIUM OF STRONGLY
MAGNETIZED PLASMA

Consider a strongly magnetized nonneutral plasma as an
ideal system of mobile particles of chargeQ, number density
ne, and temperaturekBT, immersed in a heat bath. Using the
Wigner-Seitz radius a;s3/4pned1/3 and Î3vp

−1 svp

;Î4pneQ
2/md as the units of length and time, the thermo-

dynamics of the nonneutral plasma can be described in terms
of several dimensionless parameters, including the Coulomb
coupling parameter,

G =
Q2

akBT
, s1d

which is roughly the ratio of the Coulomb potential energy to
the thermal energy per particle. From the definition of the
Coulomb coupling parameter, 1 /G can be interpreted as the
temperature in the unit of Coulomb energy,Q2/a.

From theoretical works on unmagnetized plasmas and the
results of Penning trap experiments, it is known that one
component plasma has two phases, bccscrystallined and
fluid, and the phase transition occurs atG<170 f24,25g. In
theoretical studies, one of the approaches to understand the
nature of the plasma crystal is molecular dynamics simula-
tion sMD simulationd. Hamaguchi and Farouki found the
phase transition in the unmagnetized plasma system with the
MD simulation. Also, they showed that the plasma has two
different phases-bcc and fluidf1,26g, as seen in many Pen-
ning trap experiments. In Penning trap experiments, it is
shown that the ion crystallizationsbcc phased can be
achieved with a sufficiently strong 3D cooling force. Laser
cooling, which is supposed to be one of the most promising
methods to obtain the crystalline plasma, has been used to
achieve the plasma temperature in the mK range. But despite
considerable success in crystallization of ionic plasmasf4g,
there has been no successful experiment with electron plas-
mas, because laser cooling is ineffective in cooling nonionic
plasmas.

In the system of a strongly magnetized electron plasma,
the strong magnetic field forces the transverse motion to
separate into gyromotion, the action of which is an adiabatic
invariant, and into theE3B drift motion, which is slower by
the order of a small adiabatic parameter,vp/V. When the
transverse temperature is sufficiently low, such thatkBT'

,"V, the gyromotion energy is quantized asE',n="Vsn
+ 1

2
d for the nonnegative integern. As a result of the quantum

treatment, the rest of the motions are described by the guid-
ing center approximation. The Hamiltonian of an electron in
the system reduces to

H = "VSâ'
† â' +

1

2
D +

pz
2

2m
+ FsX,Y,zd, s2d

where the potentialFsX,Y,zd is the sum of the pair poten-
tials between an electron and the other electrons, andX and
Y represent the guiding center position of the electron. A
reduced Hamiltonian, excluding the quantized gyromotion,

Hi =
pz

2

2m
+ FsX,Y,zd, s3d

allows longitudinal dynamics and guiding center dynamics in
the system. In this case, the guiding center positions,X and
Y, are conjugate to each other, so that the reduced motion of
the system can be described by two pairs of conjugate vari-
ables,sz,pzd andsX,Yd. In the dimensionless units of length,
time, and energy, the equations of motion in the classical
regime are

dz

dt
=

dHi

dpz
, s4ad

dpz

dt
= −

dHi

dz
, s4bd

dX

dt
= −

vp

Î3V

dHi

dY
, s4cd

dY

dt
=

vp

Î3V

dHi

dX
, s4dd

where the guiding center motion is clearly slower than the
longitudinal motion by the order ofvp/V.

An electron plasma to which a uniform magnetic field is
applied usually has two characteristic temperatures, the
transverse and the longitudinal, and thus has an anisotropic
distribution initially. The collisions between electrons force
the two temperatures to equilibrate in a characteristic time
scale. The equilibration rate, the inverse of the equilibration
time, is determined by the number of collisions per unit time,
and the rate,nc, can be written as

nc = nv̄b̄2Is1/ed, s5d

where v̄=Î2kBTi /m is the standard deviation for the distri-

bution, b̄=2e2/kBTi is twice the classical distance of closest

approach, ande= v̄ / b̄V is a measure of magnetic field
strength. For a weakly magnetized plasma,se@1d, Is1/ed is
obtained as −sÎ2p /15dlns1/3ed f22g, exactly as for unmag-

netized plasma, except that 1/3e replaceslD / b̄ in the loga-
rithm, wherelD=skBT/4pne2d1/2 is the Debye length. The
logarithm dependency ofnc for the weakly magnetized
plasma creates a high equilibration rate, so that the two tem-
peratures equilibrate quickly. This is because a large radius
of cyclotron motion will generate strong Coulomb collisions
among electrons, and especially when the radius is large
compared to the Debye length, the Coulomb collisions over
the range of the Debye sphere will be replaced by the colli-
sions of the gyromotion. In this case, we cannot apply the

J. LEE AND J. R. CARY PHYSICAL REVIEW E71, 036406s2005d

036406-2



guiding center approximation to the weakly magnetized
plasma, and we may assume that the plasma has an isotropic
velocity distribution initially.

However, in the case of strongly magnetized plasmase
!1d, the small radius of the gyromotion will never generate
strong Coulomb collisions among electrons. Instead, the
weak Coulomb collisions will cause negligible exchange of
energy between the longitudinal and perpendicular degrees
of freedom, and thus the longitudinal and perpendicular mo-
tions will need to be described separately for the energy-
exchanging time scale. The transverse motion would be char-
acterized as the gyrofrequency, and the longitudinal motion

characterized as two frequencies,vi= v̄ / b̄ andvp. Since the
two longitudinal frequencies are much smaller than the trans-
verse frequency, an adiabatic invariant of the gyromotion,
which is the cyclotron action, is well conserved, and also, the
longitudinal temperature does not necessarily equal the per-
pendicular temperature.

Due to the adiabatic invariant of the gyromotion for a
strongly magnetized plasma, the equilibration rate between
the transverse and longitudinal temperatures is an exponen-
tially small function of −1/ep and −1/e, where ep=vp/V
ande=vi /V are much smaller than unityf21,22g. The expo-
nentially small exchange rate of the transverse cyclotron and
the longitudinal energy,nc, prevents the two temperatures
from relaxing to a common value over a long time scale 1/nc
f22,27g. On the time scale during which the transverse action
is conserved, the distribution of the system can have the form

P = Z−1 exp3−

"VSn +
1

2
D

kBT'

−

pz
2

2m
+ FsX,Y,zd

kBTi

4 , s6d

whereZ is the partition function of the system andTi is the
longitudinal temperature, defined as the kinetic temperature.
Therefore, the thermodynamics of the plasma depends on
both the transverse and the longitudinal temperatures. Espe-
cially when the transverse temperature is lower than"V, the
longitudinal temperature will be the dominant parameter to
describe the thermodynamics and the phase transition. From
our molecular dynamics simulations for strongly magnetized
plasma, we know that the phase transition from bcc to fluid
occurs atGi <170 f23g. Moreover, the existence of the trans-
verse quantum structure suggests that the longitudinal tem-
perature can be decreased by a longitudinal microwave that
is well-tuned to the Doppler-shifted resonance frequency be-
tween the two nearest Landau levels.

III. TWO LEVEL TRANSITION EQUATION FOR
MICROWAVE COOLING

A. The basic phenomenon for microwave cooling

In this section, we will consider the two level system of a
transversely quantized electron interacting with a pair of op-
positely traveling waves, and present an argument which
gives a picture of the derivation of the dissipative equation
for the electron.

We consider a simplified electron system consisting of
two level, separated by the energy"V. This is acted upon by

an ideal microwave field of angular frequency,v, traveling
along magnetic field direction. The microwave photon causes
resonant transfer of population between the two levels when
the longitudinal velocity of the electron causes a Doppler
shift that compensates the detuning of the microwave from
the resonance. This really happens when

pz

m
=

V − v

k0
, s7d

wherek0=V /c is the wave vector of the microwave photon.
When the electron absorbs"v from the microwave field, it
must also compensate for the loss of momentum. Thus, the
electron loses an additional momentum,"k0, along the direc-
tion of propagation of the microwave. Consequently the elec-
tron loses its longitudinal energy by losing its longitudinal
momentum. In the classical point of view, this process can be
described by a Fokker-Planck equation. The Fokker-Planck
equation is well known as

]fspzd
]t

=
]

]pz
Fnsspzdfspzd + Dsspzd

]

]pz
fspzdG , s8d

wherensspzd andDsspzd are the dissipative and the diffusion
coefficient, respectively. The dissipative coefficient of the
Fokker-Planck equation decides a cooling time scale of the
system.

Let us proceed to find a proper equation for the entire
cooling process. Since an electron interacting with a micro-
wave field loses"k0 from its longitudinal momentum for the
microwave transition time, the dissipative coefficient can
simply be proportional to"k0Ws in which Ws is the micro-
wave transition rate. Considering the portion of the electron
plasma losing the longitudinal momentum asCpsn01d
sCpsn01d,1d, we establish the equation as

]fspzd
]t

< "k0
]

]pz
fCpsn01dhW+spzd − W−spzdjfspzdg, s9d

whereCpsn01d is a function of the total number ratio between
the ground and the first excited state,n01, and the stimulated
transition rate by the microwave,Wsspzd, is defined as

Wsspzd = F
sg/2d2

sg/2d2 + sv − V + sk0pz/md2 . s10d

In Eq. s10d, F has 1/sec as its unit. Usually,F can be ex-
pressed as

F =
Is

"V
, s11d

whereIs is the power of the microwave.
When the longitudinal velocity is small, Eq.s22d assumes

the dissipative form,

]fspd
]t

< − nssn01d
]

]pz
fpzfspzdg, s12d

where the dissipative coefficient,nssn01d, is
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nssn01d < Cpsn01d
4"k0

2Fsg/2d2sv − Vd
mfsg/2d2 + sv − Vd2g2

= Cpsn01dWss0d
4"k0

2sv − Vd
mfsg/2d2 + sv − Vd2g

. s13d

The number ratio,n01, should is decided by the ratio between
the stimulated transition rate and the spontaneous transition
rate, which is generated by the gyromotion. This means that
the ratio between the stimulated transition rate and the spon-
taneous transition rate is also a function of the number ratio,

Wss0d
S

= rsn01d, s14d

where the spontaneous transition rate,S, is

S<
2e2V2

3mc3 . s15d

As a result of this, the dissipative coefficient can be ex-
pressed as

nssn01d < Rpsn01dS
4"k0

2sv − Vd
mfsg/2d2 + sv − Vd2g

, s16d

where a new function,Rpsn01d, is simplyCpsn01drsn01d. For a
small number ratiosn01,0.2d, the function,rsn01d, is ap-
proximately the same to unitysrsn01d,1d. The detuning fre-
quency,v−V, has the same order tog. From these consid-
erations, the cooling time scale is approximately

ts =
1

2ns log10e
<

g

S log10e

m

"k0
2 . s17d

For 10 T as its magnetic field strength, the cooling time scale
for the longitudinal cooling is about 1 h. Consequently the
cooling time for an electron plasma to reach a critical tem-
perature is about a few hours.

B. Two-level transition equation

In this section, we will obtain the basic master equations
for microwave cooling of an electron plasma for the two
lowest Landau levels. In the low transverse temperature limit
skBT',"Vd, while the longitudinal temperature is much
higher than the harmonic oscillation energy generated by
plasma oscillation,skBTi @"vpd, the longitudinal energy can
be reduced by microwave radiation. Absorption of a micro-
wave photon by an electron, in a Penning trap, moving it up
one in Landau state, can reduce the longitudinal energy, just
as laser cooling does for ionic plasma and equilibrium. The
spontaneous radiation reduces the transverse energy, so that
the transverse state moves back to the original Landau state
until the transverse temperature is the same as the heat bath
temperature. During the entire process, only the longitudinal
temperature will decrease.

Let fnspzd denote the longitudinal momentum distribution
of transverse quantum numbern, which implies that the elec-
trons are found in thenth Landau state with longitudinal
momentumpz at a certain time. Thenfnspzd tends to increase

with time, when electrons in other states make transitions to
the state, and it tends to decrease with time, when the elec-
trons in the state make transitions to other states. The longi-
tudinal velocity distributions during the process can be de-
scribed by a master equation,

]f lspd
]t

= o
m
E dqffmsqdTmlsq,pd − f lspdTlmsp,qdg, s18d

whereTlmsp,qd is the transition rate fromlth to mth state.
Following the assumption that most of the particles are in

the ground or first excited state, the two transition rates,

T10spz8 ,pzd andT01spz,pz8d can be expressed asD̃spz8 ,pzd and

W̃spz,pz8d, respectively. The assumption leads the two master
equations to

]f0spzd
]t

=E dpz8f1spz8dD̃spz8,pzd − f0spzd E dpz8W̃spz,pz8d,

s19ad

]f1spz8d
]t

=E dpzf0spzdW̃spz,pz8d − f1spz8d E dpzD̃spz8,pzd,

s19bd

where D̃spz,pz8d represents the transition rate from the ex-

cited state to the ground, andW̃spz,pz8d represents from the
ground state to the excited.

An electron may decay from the first excited state to the
ground by spontaneous and by microwave-stimulated emis-

sion. D̃spz,pz8d may be separated into the spontaneous and
the stimulated emission rate. We define the spontaneous

emission rate asD̃0spz,pz8d, and the spontaneous absorption

rate asW̃0spz,pz8d. In quantum mechanics, spontaneous decay
can be interpreted as the interaction between an electron and
the vacuum fluctuation of the electromagnetic field. An elec-
tron loses its energy during the decay, while the vacuum
electromagnetic field gains the same amount of energy that
the electron loses. The total Hamiltonian to describe this kind
of system is expressed as the sum of the Hamiltonian of the
electron, the Hamiltonian of the vacuum field, and the inter-
acting Hamiltonian between the electron and the vacuum
field. The total Hamiltonian is

H = H0 + Hf + H−, s20d

whereHf is the Hamiltonian of the vacuum field, andH− is
the interacting Hamiltonian. Without loss of generality, the
Hamiltonian of the electron in a constant magnetic field can
be

H0 =
p'

2

2m
+

mV2r'
2

2
+

pz
2

2m
, s21d

wherer' is the radial distance from the guiding center of the
electron, andp' is its momentum. The interacting Hamil-
tonian,H−, creates the spontaneous decay between two near-
est Landau state of the electron. Thus, the spontaneous emis-
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sion rate can be calculated from the famous Fermi golden
rule,

An8,nspz8,pzd =
2p

"
E ukf uH−uilu2gsEddVs, s22d

whereVs is the solid angle of the emitted photon. The inter-
acting Hamiltonian,H−, is given by

H− =
e

mc
A+ ·p, s23d

where A+ is a creation operator that creates a photon on
vacuum field. The initial state of the electron and the elec-
tromagnetic field is

uil = un,pzl ^ u0l, s24d

and the final state is

ufl = un8,pz8l ^ ukl. s25d

Here,n8 andpz8 in the first ket of the direct product represent
the quantum number of the transverse Landau state and lon-
gitudinal momentum of the electron, respectively. The sec-
ond term of the direct product represents the quantum state
of the electromagnetic field. So,kf uH−uil is the emission ele-
ment matrix betweennth andn8th Landau state. Obviously,
the n8th state is the lower Landau state, because the electro-
magnetic field gains energy as much as the the initial Landau
state loses. The density of states in Eq.s22d is

gsEd =
v2V

"s2pcd3 , s26d

whereV is the volume of the system. Considering the tran-
sition between two nearest statessn8=n−1d as the main tran-
sition in our theory, the emission matrix element is

kf uH−uil =
e

mc
kn8,pz8ukk uA+u0l ·pun,pzl. s27d

The transition matrix of the field is

kk uA+u0l = S2p"c2

VV
D1/2

âeik·r , s28d

where â is a unit polarization vector that is normal to the
propagation vector of the emitted photon. Applying a dipole
approximation that the transverse wavelength of the field is
far longer that the oscillation dimension and

fr ,H0g = i"p/m, s29d

whereH0 is the Hamiltonian for only electron, we obtain the
emission matrix element,

kf uH−uil < ies2p"Vd1/2kn8,pz9uâ · r un,pzl, s30d

wherepz9=pz8−"ki is the momentum, including the recoil ef-
fect. Combining these results, the probability is

An8,nspz8,pzd <
4e2v3

3"c3s1 + vz/cd
ukn8,pz9ur un,pzlu2, s31d

which is the modified cyclotron radiation rate with a condi-
tion of longitudinal momentum change. Inserting the solu-

tion for an electron in a uniform magnetic field,

kr un,pzl = S mV

p"22nsn!d2D1/4

HnSÎmV

"
r'D

3expF−
mV

2"
r'

2 + i
pz

"
zG , s32d

whereHnsxd is thenth order Hermite polynomial, we obtain

ukn8,pz9ur un,pzlu2 <
n"V

2mV2dn,n8+1dspz9 − pzd. s33d

Inserting this result into Eq.s31d, the transition rate from the
excited to the ground state by spontaneous decay in our sys-
tem is found to be

A01spz8,pzd < Ssvddspz9 − pzd =
2e2v2

3mc3 dspz9 − pzd. s34d

This result is a modified decay rate of the spontaneous decay
rate without any longitudinal recoil, so that the result in-
cludes the longitudinal recoil by its momentum,"ki.

In this case, the resonance conditions including the recoil
is

"ki = ± "k0 = pz8 − pz, s35ad

"vR = "V +
1

2m
spz8

2 − pz
2d < "V + "ki

pz

m
, s35bd

whereki has two values, ±k0, because both types of transi-
tion are required to get a low longitudinal temperature. Thus,
the spontaneous decay rate is modified as

Ā01spz8,pzd < SsvRddspz8 − pz − "kid =
2e2vR

2

3mc3 dspz8 − pz − "kid.

s36ad

In order to keep the thermal equilibrium at a finite tem-
perature, another transition rate, called the induced transition
rate by the electromagnetic radiation, is required in the equi-
librium. In general, the two transitions for the two states are
satisfied by the rule of Einstein’sA andB coefficients. With
only the two transition rates, we can get relations as

D̃0spz8,pzd <
Ā01spz8,pzd

1 − exps− b"vRd
, s37d

W̃0spz8,pzd = D̃0spz8,pzdexps− b"vRd, s38d

whereb is defined as

b =
1

kBTh
, s39d

from the temperature of the heat bath,Th. However, the in-
teraction of electrons with the microwave causes two-way
transitions between the ground and the first excited state.
These transitions are known as stimulated transitions, the
rates of which are the same. Moreover, electrons of the first
excited state radiate photons spontaneously before they reach
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an equilibrium, and then drop down to the ground state. This
kind of radiation is formulated as the cyclotron radiation.
Therefore, the total transition rate from the first excited state
to the ground state is the sum of the spontaneous decay, the
induced emission by the electromagnetic radiation, and the
stimulated transition rate by the external microwave, while
the transition rate from the ground to the first excited state is
the sum of the induced absorption by the electromagnetic
radiation and the stimulated transition rate by the external
microwave. The time-dependent microwave field, generated
in a cavity, can be expressed as

Estd = E0 expf− isv0 + dvdt − v0t/2Qg, s40d

where Q is defined as 2p times the time-averaged energy
stored in the cavity to the energy loss per cycle. The above
field is the solution which gives a constantQ. This damped
oscillation, as in Eq.s40d, does not have a pure frequency,
but a superposition of frequencies aroundv=v0+dv. The
Fourier transformation of Eq.s40d leads to a frequency dis-
tribution of the energy in the cavity. The result of a Fourier
transformation such as

uEsvdu2

8p
=

E0
2/s4pd2

sv0/2Qd2 + sv − v0 − dvd2 s41d

represents energy density as a function of frequency. The
microwave-stimulated transition rate is the same as the en-
ergy density per unit of emitted photon energy, and the reso-
nance frequency,vR=v0+dv, is decided by the sum of the
transverse energy change and the longitudinal energy
change.

As mentioned, our system is simplified as consisting of
two levels separated by the energy"V. This is acted upon by
a microwave field of frequencyv, traveling along the mag-
netic field line. When an electron absorbs the energy"v, it
must also compensate for the loss of momentum"ki by the
field. The resonance energy is mainly the transition energy
between two transverse energy levels, and is corrected by a
small longitudinal energy change.

Thus resonance conditions of the microwave are the same
as those during spontaneous transition. This implies thatv0
anddv are regarded asV andkipz/m, respectively. The den-
sity of states in the microwave field is the normalization of
the energy density generated by the microwave field. So the
normalized density of states is

gsvd =
1

p

V/2Q

sV/2Qd2 + sv − V − kipz/md2 . s42d

The microwave-stimulated transition rate can be obtained
from the Fermi golden rule, which is used to obtain the spon-
taneous emission in Eq.s22d. For the stimulated transition,
the density of states generated by the microwave field should
be replaced by the density of states for the spontaneous emis-
sion expressed in Eq.s26d. In this case,v0 is replaced byV,
andDv can be interpreted askipz/m, by the resonance con-
dition. Also, the emission matrix for the stimulated transition
is changed to

Hn,n8 =
eE0

Î8p
kn8,pz8urW'un,pzl, s43d

where rW' is perpendicular to the wave vector of the field.
Following the same procedure to calculate the spontaneous
transition rate, and introducing a microwave intensity as a
combination of a dipole momentum and a microwave field
strength, the stimulated transition rate by microwave can be
expressed as

wsspz8,pzd =
Is0

"V

sg/2d2

sg/2d2 + D2sv,ki,pz,pz8d
, s44d

where the functionD is defined asD;v−vRski ,pz,pz8d. The
Is0 in ws is the power of the microwave defined as

Is0 =
e2E0

2

4p"g
, s45d

and theg can be determined asV /Q from theQ factor of the
microwave cavity. Including the resonance condition in the
momentum space, the transition rate can be expressed as

w̃sspz8,pzd = wsspz8,pzddspz8 − pz − "kid. s46d

Combining the two transition rates, the total emission and
the absorption transition rates are changed to

D̃spz8,pzd = D̃0spz8,pzd + w̃sspz8,pzd, s47ad

W̃spz8,pzd = W̃0spz8,pzd + w̃sspz8,pzd. s47bd

The above two transition rates have their own momentum
resonance conditions in themselves, so that the energy reso-
nance condition automatically can be applied to the these
two equations. In order to cool the electron plasma properly,
we need to use both ways of cooling, which means that we
have to apply two microwaves symmetrically in momentum
space. The electron that has a positive momentum will lose
its longitudinal momentum by the negative longitudinal
wave vector −"k0, wherek0 is positively defined as"V /c.
On the other hand, the electron that has negative momentum
will gain longitudinal momentum by the positive longitudi-
nal wave vector"k0. Under these two simultaneous pro-
cesses, the electrons will lose their longitudinal energy.

We define the following functions for our convenience:

D0spz,pz8d =
SsvRd/2

1 − exps− b"vRd
, s48ad

W0spz,pz8d = D0spz,pz8dexps− b"vRd, s48bd

where the factor 1/2 appears in Eq.s48ad, because a normal-
ized two-way plane wave should be considered a longitudi-
nal wave instead of a one-way plane wave. Now the longi-
tudinal distribution equations of Eq.s19ad and Eq.s19bd can
be reduced to
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]f0spzd
]t

= o
ki=±k0

ff1spz + "kidD0spz + "ki,pzd

− f0spzdW0spz,pz + "kidg

+ o
ki=±k0

ff1spz + "kidwsspz + "ki,pzd

− f0spzdwsspz,pz + "kidg, s49ad

]f1spz8d
]t

= o
ki=±k0

ff0spz8 − "kidW0spz8 − "ki,pz8d

− f1spz8dD0spz8,pz8 − "kidg + o
ki=±k0

ff0spz8 − "kidwsspz8

− "ki,pz8d − f1spz8dwsspz8,pz8 − "kidg, s49bd

where thevR can be determined byki.

IV. FOKKER-PLANCK EQUATION

In order to calculate the cooling rate of the longitudinal
temperature, it is necessary for us to derive a Fokker-Planck
equation induced by a microwave and its dissipative and
diffusional coefficients. In our analysis of the two level-
transition equations, we have supposed that the transition
time scale is much smaller than the collision time scale.
Without an external microwave field, the collision drives the
plasma to a state of equilibrium, but a strong magnetic field
causes a shorter spontaneous-decay time scalestsp

−1

<2e2V2/3mc3d than that caused by the interparticle collision
alone, because the time scale of the collision between elec-
trons is exponentially smaller by its exponents −V /vp and
−V /vi f21,22g. With a comparable microwave intensity ap-
plied to the plasma, the plasma profile will evolve in a rela-
tively short time, independently of the relaxation process by
the collision. As the equation that is driven by the collision is
usually reduced to a Fokker-Planck equation in a long time
scale, the shorter time scale transition equations of our
strongly magnetized, microwave-stimulated system can be
reduced to another Fokker-Planck equation in a relatively
short time scale.

In our system, the momentum change,"k0="V /c, is
much smaller than the standard deviation of the longitudinal
distribution,kpz

2l1/2. Also, the peak position of the microwave
spectrum in momentum space,msV−vd /k0, is much larger
than "k0. Since the total longitudinal distribution,fspzd
= f0spzd+ f1spzd, is a smooth and slowly-varying function
aboutpz, we easily find a condition for the distribution,

"k0
]fspzd

]pz
! fspzd. s50d

This condition implies that the deforms of the longitudinal
distributions by small changes in their longitudinal momenta
are very small compared to the original longitudinal distri-
butions. As results of this condition, the two transition equa-
tions in their main orders are completely opposite, and the
state of the plasma that is represented as the total longitudi-
nal distribution evolves to low longitudinal temperature

range in a long time scale. This condition also leads a special
relation,

f1spzd
f0spzd

=
Wspz,pz + "k0d + Wspz,pz − "k0d
Dspz,pz − "k0d + Dspz,pz + "k0d

, s51d

in a short time scale, the spontaneous time scale, to the two
distributions,f0spzd and f1spzd.

By taking a Taylor expansion of the two level equations,
our original transition equations can be written as

]f0spzd
]t

< f1spzdfDspz;− "k0d + Dspz;"k0dg

− f0spzdfWspz;"k0d + Wspz;− "k0dg

+ "k0
]

]pz
ff1spzdhDspz;− "k0d − Dspz;"k0djg

+
"2k0

2

2

]2

]pz
2ff1spzdhDspz;− "k0d + Dspz;"k0djg,

s52ad

]f1spzd
]t

< f0spzdfWspz;"k0d + Wspz;− "k0dg

− f1spzdfDspz;− "k0d + Dspz;"k0dg

+ "k0
]

]pz
ff0spzdhWspz;"k0d − Wspz;− "k0djg

+
"2k0

2

2

]2

]pz
2ff0spzdhWspz;"k0d + Wspz;− "k0djg

s52bd

to the order of"2k0
2, where the second argument in the pa-

renthesis ofD, W, andws represents the gain of momentum.
This implies that D0spz; ±"k0d, W0spz; ±"k0d, and
wsspz; ±"k0d become

D0spz; ± "k0d =

e2SV ±
k0

m
pzD2

3mc3

1 − expf− bsV ± k0pz/mdg
, s53ad

W0spz; ± "k0d =

e2SV ±
k0

m
pzD2

3mc3 expf− bsV ± k0pz/mdg

1 − expf− bsV ± k0pz/mdg
,

s53bd

wsspz; ± "k0d =
Is0

"V

sg/2d2

sg/2d2 + sDv ± k0pz/md2 , s53cd

where the detuning from resonance frequency,Dv is defined
as

Dv ; V − v. s54d

For our convenience, we define the following functions as
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ws
Tspzd = wsspz;− "k0d + wsspz;"k0d, s55ad

Dwsspzd = wsspz;− "k0d − wsspz;"k0d, s55bd

D0
Tspzd = D0spz;− "k0d + D0spz;"k0d, s55cd

DD0spzd = D0spz;− "k0d + D0spz;"k0d, s55dd

W0
Tspzd = W0spz;− "k0d + W0spz;"k0d, s55ed

DW0spzd = W0spz;− "k0d − W0spz;"k0d. s55fd

By defining the following four functions as combinations of
the above six defined functions,

DTspzd = D0
Tspzd + ws

Tspzd, s56ad

WTspzd = W0
Tspzd + ws

Tspzd, s56bd

DDspzd = DD0spzd + Dwsspzd, s56cd

DWspzd = DW0spzd + Dwsspzd, s56dd

the two transition equations can be rewritten as

]f0spzd
]t

< f1spzdDTspzd − f0spzdWTspzd

+ "k0
]

]pz
hf1spzdDDspzdj +

"2k0
2

2

]2

]pz
2hf1spzdDTspzdj,

s57ad

]f1spz8d
]t

< f0spzdWTspzd − f1spzdDTspzd

+ "k0
]

]pz
hf0spzdDWspzdj

+
"2k0

2

2

]2

]pz
2hf0spzdWTspzdj. s57bd

By adding the two transition equations, a partial differential

equation for the distributionfspzd can be derived as

]fspzd
]t

< − "k0
]

]pz
ff0spzdDWspzd − f1spzdDDspzdg

+
"2k0

2

2

]2

]pz
2ff0spzdWTspzd + f1spzdDTspzdg s58d

to the order of"2k0
2. From the above equation, the main

change in the plasma profile is proportional to"k0. However,
the right-hand side of the equation is not an appropriate form
for a Fokker-Planck equation. In order to find a Fokker-
Planck equation for onlyfspzd, the right-hand side of Eq.
s58d has to be an expression offspzd rather than offnspzd.

As mentioned before, the condition in Eq.s50d leads a
special relation, Eq.s51d, between the two state in a short
time scale, the spontaneous time scale. After the time scale,
the two states can be expressed as functions of the total state,
fspzd, because of a definition,fspzd= f0spzd+ f1spzd. This
means that Eq.s58d can be a Fokker-Planck equation in the
short time scale. To do that properly, we use Eq.s57ad and
Eq. s57bd. As an immediate result of combining Eq.s57ad
and Eq.s57bd,

]

]t
fWTspzdf0spzd − DTspzdf1spzdg

< − fDTspzd + WTspzdgfWTspzdf0spzd − DTspzdf1spzdg

+ "k0FDTspzd
]

]pz
hDWspzdf0spzdj

+ WTspzd
]

]pz
hDDspzdf1spzdjG s59d

is obtained, to the order of"k0. Equations59d shows that the
functionWTspzdf0spzd−DTspzdf1spzd decreases as much as its
exponent,DTspzd+WTspzd, makes it decrease. Therefore, the
function with a large exponent vanishes so rapidly that the
stationarity of the function gives a relation betweenf0spzd
and f1spzd. The two states, as functions of the total state, can
be obtained by eliminating the time derivative term of the
equation. With a definition,fspzd= f0spzd+ f1spzd, the two
states become

f0spzd =
DTspzd

DTspzd + WTspzd
fspzd + "k0

DTspzd
hDTspzd + WTspzdj2

]

]pz
FDWspzd

DTspzd
DTspzd + WTspzd

fspzdG
+ "k0

WTspzd
hDTspzd + WTspzdj2

]

]pz
FDDspzd

WTspzd
DTspzd + WTspzd

fspzdG , s60ad

f1spzd =
WTspzd

DTspzd + WTspzd
fspzd − "k0

DTspzd
hDTspzd + WTspzdj2

]

]pz
FDWspzd

DTspzd
DTspzd + WTspzd

fspzdG
− "k0

WTspzd
hDTspzd + WTspzdj2

]

]pz
FDDspzd

WTspzd
DTspzd + WTspzd

fspzdG s60bd
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to the order of"k0. Inserting these two expressions into Eq.
s58d gives the proper form of the Fokker-Planck equation,

]fspzd
]t

=
]

]pz
FKspzdfspzd + Hspzd

]

]pz
fspzdG . s61d

The two coefficients are defined as

Kspzd = "k0K1spzd + "2k0
2K2spzd, s62ad

Hspzd = "2k0
2H2spzd. s62bd

In order to obtain the coefficientsK1spzd, K2spzd, andH2spzd
properly, we need to find the main order of the components
in the coefficients. The coefficients haveD0

Tspzd, W0
Tspzd,

DD0spzd, DW0spzd, ws
Tspzd, andDwsspzd as their components.

The coefficients are the functions of the combinations of the
six components. Sincews

Tspzd, andDwsspzd are very localized
at pz= 7mDv /k0, and the other four components are slow-
varying functions inpz space, we know easily that the first
nonvanishing terms of the four components,D0

Tspzd, W0
Tspzd,

ws
Tspzd, andDwsspzd, do not depend on"k0. The main non-

vanishing terms of the remaining two components,DD0spzd
andDW0spzd, are different from those of the other four com-
ponents. By expandingDW0spzd andDD0spzd to the order of
"k0,

DW0spzd = −
2

"V

"k0

m

S0 exps− b"Vd
1 − exps− b"Vd

pz

+ b
"k0

m

S0

h1 − exps− b"Vdj2pz, s63ad

DD0spzd = DW0spzdexps− b"Vd −
"k0

m

S0

1 − exps− b"Vd
,

s63bd

we know that the nonvanishing terms in both components
proportional to"k0.

Recalling the main orders ofDW0spzd and DD0spzd, we
can obtainK1spzd, K2spzd, andH2spzd. The results are

K1spzd = −
fD0

Tspzd − W0
TspzdgDwsspzd

DTspzd + WTspzd
, s64ad

K2spzd = −
1

"k0

DTspzdDW0spzd − WTspzdDD0spzd
DTspzd + WTspzd

−
2Dwsspzd

hDTspzd + WTspzdj2FDTspzd
]

]pz
H DTspzd

DTspzd + WTspzd
DwsspzdJWTspzd

]

]pz
H WTspzd

DTspzd + WTspzd
DwsspzdJG

−
]

]pz

DTspzdWTspzd
DTspzd + WTspzd

, s64bd

H2spzd = −
2Dws

2spzd
hDTspzd + WTspzdj2

hDTspzdj2 + hWTspzdj2

DTspzd + WTspzd
+

DTspzdWTspzd
DTspzd + WTspzd

. s64cd

As mentioned before, the main change of the plasma profile
is proportional to"k0. The dissipation of the plasma is more
dominant than the diffusion because the main ratio of the two
coefficients is in the order of"k0.

V. STEADY STATES

Let us apply the Fokker-Planck equation of Eq.s61d with
K1spzd, K2spzd, andH2spzd, in Eq.s64ad, Eq.s64bd, Eq.s64cd.
We may consider two extreme cases: the case in which no
microwave is applied, and the case in which there is only
microwave-stimulated transition.

In the first case, where there is no microwave, the state is
equilibrated by both spontaneous decay and induced transi-
tion. Here, the induced transition is generated by the electro-
magnetic radiation. Whenever an electron in plasma experi-

ences a transition by both the spontaneous and the induced
transition, the electron loses its longitudinal energy by lon-
gitudinal momentum loss,"k0, repeating the process until the
plasma reaches an equilibrium. As a result of this equilibra-
tion process, the stationary temperature of the plasma should
be exactly the same as the heat bath temperature of the
plasma. Mathematically, this process can be described by the
classical Fokker-Planck equation, which has a constant dif-
fusion coefficient and a dissipative coefficient which is pro-
portional topz. Therefore, the Fokker-Planck equation of Eq.
s61d should be reduced to a classical Fokker-Planck equa-
tion. Applying wsspzd=0 to K1spzd, K2spzd, andH2spzd, with
DW0spzd, and DD0spzd, in Eq. s63ad and Eq.s63bd, we can
obtainK2spzd andH2spzd, as

K2spzd =
b

2m

S0

sinhsb"Vd
pz, s65ad
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H2spzd =
1

2

S0

sinhsb"Vd
, s65bd

while K1spzd vanishes. SinceK2spzd andH2spzd are expressed
asK2pz, andH2, the dissipative time scale and the stationary
temperature can be calculated from the well-known results of
the classical Fokker-Planck equation:

1

te
= 2"2k0

2K2, s66ad

kBT` =
1

m

"2k0
2H2

"2k0
2K2

, s66bd

wherete is the exponent decay time, andT` is the stationary
temperature as time goes infinity. A direct calculation gives

1

te
= b

"2k0
2

2m

2S0

sinhsb"Vd
, s67ad

T` = Th. s67bd

Note that the Fokker-Planck equation withK2pz and H2 as
K2spzd andH2spzd leads to a Gaussian profile as the station-
ary state, which means that the distribution is unchanged
when we takeTh as the initial temperature. The dissipative
exponent,ne;1/te, is proportional to"2k0

2, while the expo-
nent with the microwave is generally proportional to"k0.
Therefore, microwave cooling is"k0 times faster than equili-
bration by both the spontaneous and the induced transition.

The second case, of only microwave-stimulated transition,
produces almost the same result as the case of no microwave.
In this case, the transition coefficients,DTspzd and WTspzd,
are the same asws

Tspzd, so that the two coefficients of the
Fokker-Planck equation are reduced to

Kspzd =
"2k0

2

2 F ]

]pz
ws

Tspzd −
Dwsspzd
ws

Tspzd
]

]pz
DwsspzdG ,

s68ad

Hspzd =
"2k0

2

2
Fws

Tspzd −
Dws

2spzd
ws

Tspzd
G . s68bd

The main difference between these coefficients and those in
the case of both spontaneous and stimulated transition is that
the dissipative coefficient,Kspzd, is mainly proportional to
"2k0

2 rather than to"k0. This implies that cooling with only
microwave-stimulated transition is so slow there is effec-
tively no cooling within the desired short time scale. This
phenomenon can be understood as follows. Without the
spontaneous decay and the induced transition by the electro-
magnetic radiation, an electron in the ground state absorbs a
microwave photon and then moves up one in its Landau
state. At the same time, the electron loses its longitudinal
momentum,"k0, so that it also loses its longitudinal energy.
By contrast, an electron in the excited state emits a photon of
the same energy as it would in the case of absorption by a
microwave. As a result of the emission, the electron moves
down to the ground state and gains longitudinal momentum,

"k0. Since there is no spontaneous decay, but only the same
amount of microwave in both the ground state and the first
excited state, the number of electrons in the two states is
almost the same. As shown in Eq.s59d and explained before,
the time scale needed to reach the situation in which the
number of electrons is almost the same is very short, com-
pared to the cooling time scale. As the stationary solutions of
Eq. s59d, the two states are

f0spzd <
1

2
fspzd +

"k0

4ws
Tspzd

]

]pz
fDwsspzdfspzdg, s69ad

f1spzd <
1

2
fspzd −

"k0

4ws
Tspzd

]

]pz
fDwsspzdfspzdg. s69bd

Obviously, the difference between the two states is propor-
tional to "k0, which means that the two states are almost
identical. Because the number of electrons that lose their
longitudinal momenta is exactly the same as the number that
gain longitudinal momenta, there is no more longitudinal
cooling in this case. The spontaneous terms mainly prevent
the numbers of electrons in the two states from being the
same, so that longitudinal cooling can continue.

We have investigated cooling without microwave-
stimulated transition and cooling with only microwave-
stimulated transition. Without the stimulated transition, the
Fokker-Planck equation reduces to exactly what we want: an
equation that always gives a Gaussian profile in time, when
we take a Gaussian profile as its initial longitudinal distribu-
tion; a stationary temperature that is exactly the same as the
heat bath temperature; and a dissipative exponent propor-
tional to "2k0

2. The Fokker-Planck equation in the case of
only microwave-stimulated transition leads to a rapid transi-
tion in Landau level, which leads to the same populations in
the two Landau levels very quickly. However, the dissipative
term in the equations is proportional to"2k0

2. In both cases,
the cooling rate that is determined by the dissipative term is
proportional to"2k0

2. On the other hand, the cooling rate with
both transitions is mainly proportional to"k0. This implies
that the microwave-stimulation makes the cooling rate"k0
times faster than the cooling rate without the stimulation.
Therefore, longitudinal cooling by microwave-stimulation
can be faster than natural cooling brought about by changing
the heat bath temperature.

VI. TEMPERATURE RELAXATION

We have derived a Fokker-Planck equation induced by a
microwave and its dissipative and diffusion coefficients, and
showed that the deformed equations for two extreme cases
are well explained physically. With the dissipative and the
diffusion coefficients of the Fokker-Planck equation, the
cooling rate of the longitudinal temperature can be calcu-
lated. In order to get the relaxation equation for the longitu-
dinal temperature, we will deform the Fokker-Planck equa-
tion as a form of dimensionless equation.

First of all, we need to introduce a dimensionless time to
the system. The particle number ratio between the ground
and the first excited state depends on the spontaneous and the
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stimulated transition rates. More rigorously, the ratio de-
pends on the relative rate of the stimulated transition rate to
the spontaneous transition rate. Unlike spontaneous transi-
tions, which occur with every electron, microwave-
stimulated transitions occur only with electrons with veloci-
ties that satisfy a resonance condition. This means that the
spontaneous transition is more dominant than the stimulated
transition, except for some ranges in velocity space where
the localized stimulated transition is dominant.

For this reason we define a dimensionless time as

t = S0t, s70d

where S0=2e2V2/3mc3 is the spontaneous decay rate. As
units of momentum and microwave intensity, we employ
pT=smkBThd1/2 and Es=sIs0/"Vd /S0, whereTh is the heat
bath temperature. With the two units, the microwave transi-
tion rate can be dimensionless. The rate is then

w̄ssqz; ± "k0/pTd = Es

S mg

2kipT
D2

S mg

2kipT
D2

+ SmDv

kipT
7 qzD2 , s71d

and the Fokker-Planck equation is

]fsqzd
]t

=
]

]qz
FK̄sqzdfsqzd + H̄sqzd

]

]qz
fsqzdG , s72d

where qz=pz/pT is the dimensionless momentum, and the

fsqzd is the dimensionless distribution. TheK̄sqzd and H̄sqzd
are defined from Eq.s64ad, Eq. s64bd and Eq.s64cd by rede-
fining the four functions as

D̄Tsqzd =
DTspzd

S0
, s73ad

W̄Tsqzd =
WTspzd

S0
, s73bd

w̄s
Tsqzd =

wsspzd
S0

, s73cd

Dw̄ssqzd =
Dwsspzd

S0
, s73dd

and by replacing"k0 to "k0/pT.
In order to solve Eq.s72d numerically, we will use Galer-

kin FEM methodf28g. By applying the method, Eq.s72d can
be expressed in discrete regime and the values offsqzd are
calculated on a regular set of grid pointsl, with appropriate
qz. To get intermediated values, a set of local weight func-
tions around the grid points can be applied with some restric-
tive conditions. Then the continuous functionfsqzd is ap-
proximated by the sum of a linear combination of the local
weighting functions as a form of

fsqzd = o
l

Flstdalsqzd, s74d

which can be interpreted as the distribution for finite-size
momentum, sampled on the grids through an appropriate in-
terpolation. In this case, the first order weighting is enough
to achieve the interpolation, so that the local weighting can
be defined as

alsqzd =
1

Dqz
2sDqz − uqz − qz,lud, s75d

whereDqz is the length between two nearest grid points, and
the function vanishes outside the range,qz,l−1,qz,qz,l+1.

By applying Eq.s74d and Eq.s75d for parallel distribution
equations, Eq.s72d can be reduced to a finite dimensional
matrix equation in the form of

o
l

]

]t
FlstdĀlm = − o

l

fFlstdK̄lm + FlstdH̄lmg, s76d

whereFlstd is the value offsqzd at qz=qz,l, and the coeffi-
cients of equation can be calculated as

Ālm =E dqzalsqzdamsqzd, s77ad

K̄lm =E dqzalsqzdK̄sqzd
]

]qz
amsqzd, s77bd

H̄lm =E dqz
]

]qz
alsqzdH̄sqzd

]

]qz
amsqzd. s77cd

This equation serves to obtain the time evolution of the dis-
tribution function. After solving the matrix equation, the dis-
tribution can be represented by the coefficients,Flstd. Simi-
larly, we can find a longitudinal temperature relaxation
equation by multiplyingqz

2 in Eq. s72d. The final discretized
equation is

o
l

]

]t
FlstdT̄l = − o

l

fFlstdL̄l + FlstdS̄lg, s78d

where the coefficients are

T̄l =E dqzalsqzdqz
2, s79ad

L̄l = 2E dqzalsqzdqzK̄sqzd, s79bd

S̄l = 2E dqz
]

]qz
alsqzdqzH̄sqzd. s79cd

In Eq. s78d, the left-hand side represents the time evolution
of the longitudinal temperature, and the first term and the
second term of right-hand side represent the dissipative and
the diffusive term, respectively. Equations78d is the equation
to get the evolution of the longitudinal temperature numeri-
cally.
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The exact expression for the evolution of the longitudinal
temperature can be obtained from Eq.s72d by multiplying
qz

2/2 and then integrating that. The expression is

Ṫistd/2
S0Ti

s0d = −E dqzqzFK̄sqzdfsqzd + H̄sqzd
]

]qz
fsqzdG , s80d

where the time derivativeṪistd is not dimensionless but ex-
pressed in the unit of sec. As mentioned, the dominant term
in the right-hand side is proportional to"k0/pT in the dissi-
pative term and the other terms are"k0/pT times smaller than
the dominant one. So, with only the dominant term the Eq.
s80d can be written as

Ṫistd
Ti

s0d < − nesB,Is0,T';Tid. s81d

The right-hand side from the previous equation is defined as

nesB,Is0,T';Tid = 2S0
"k0

pT
E dqzqzK̄1sqzdfsqzd, s82d

whereK̄1sqzd is

K̄1sqzd = −
D̄0

Tsqzd − W̄0
Tsqzd

D̄Tsqzd + W̄Tsqzd
Dw̄ssqzd. s83d

Now we will discuss results for rescaling parameters. A gen-
eral rule for changing all parameters cannot be obtained, but
we can get a useful relation for the cooling rate for a special

case. SinceD̄Tsqzd, W̄Tsqzd, andw̄ssqzd are invariant for res-
caling B and Is0/"V to kB and k2Is /"V, respectively,

K̄1sqzd is also invariant for rescaling.k0 andS0 are expanded
to kk0 and k2S0, respectively, by rescaling. We must also
consider the rescaling of the transverse temperature. The res-
caling ofB forcesV to be rescaled tokV, so thatT' should
be rescaled tokT', to keep the ratio between the ground and
the first excited state the same during cooling. This can be
done by rescaling only the initial temperatureT

'

s0d to kT
'

s0d.
Therefore, a relation for rescaling,

neskB,k2Is0,kT';Tid = k3nesB,Is0,T';Tid, s84d

can be obtained.

VII. COOLING CONDITIONS OF NON-NEUTRAL
PLASMA

To reach the desired cooling limit provided by the two
level-transition equations in our theory without any contra-
diction, some restrictive conditions on the cooling process
are necessary. One of these was presented previously. The
quantum limit on the transverse motion of strongly magne-
tized plasma should be effective during the simulation. The
transverse temperatures during the simulation should always
be lower than the Landau temperature. Also, it is assumed
that the transverse temperature is so low that most of the
particles are in the ground or the first excited state, which
means the number of particles in the second and higher ex-

cited states is always small compared to the number in the
two lowest states. Therefore, the transverse temperatures are
low enough to keep most of the particles in the two lowest
states during the simulation.

To cool the particles properly without contradiction to the
theory that we have suggested, it is necessary to find a con-
dition related to the frequency and the frequency width of the
microwave spectrum applied to the particles. From the pre-
vious theoretical treatment, we know the frequency must be
slightly smaller than the gyrofrequency, so that the micro-
wave can make a particle move up one in Landau level and
simultaneously reduce the longitudinal energy. However, if
the frequency width of the microwave spectrum is large
enough to exceed a certain limitswhich will be investigated
in detail later in this sectiond, our theory encounters two
serious problems. One is caused by spin resonance fre-
quency, which is automatically larger than the Landau fre-
quency, becauseg/2<1.001 is slightly larger than unity. If
the width is large enough that

g

2
. Sg

2
− 1DV, s85d

where g is the normal frequency width of the microwave,
V /Q, then some of the particles will change their spin states
from spin-up to spin-down, instead of moving up in Landau
level, and this will cause more longitudinal energy change.
However, this kind of effect breaks our two level assump-
tion. In order to avoid this problem, theQ factor should be
larger than 103.

The other problem encountered by our theory is that the
cooling is very effective as long as the width in momentum
space,g /ki, is smaller than the standard deviation of the
longitudinal profile in momentum space. When a microwave
with a wave numberki and a frequencyvR, which are de-
fined in Eq.s35ad and Eq.s35bd, propagates along the mag-
netic field in the plasma, an electron with longitudinal mo-
mentumpz along the magnetic field experiences cooling or
heating, because the usual Doppler effect, a shifted fre-
quency,

v8 = v + ki

pz

m
, s86d

has interacting terms between the wave vectorki and the
longitudinal momentumpz. If v8 coincides with the electron
cyclotron frequencyV, then resonant absorption of the wave
energy by electrons will take place. This phenomenon is ef-
fective in the vicinity of the resonance frequency in momen-
tum space, where particles lose their momenta so that they
move into lower momentum range. Because of the resonance
condition, all particles near the resonance frequency are
shifted into lower momentum range. Moreover, if the reso-
nance frequency is well-chosen, then the particles can rap-
idly lose most of their momenta, and the longitudinal tem-
perature can decrease until the the width of longitudinal
distribution is almost the same as the width of the microwave
spectrum in momentum space,g /ki. After this point, the
cooling rate of the longitudinal motion will slow down. This
gives us a condition for the microwave applied to the par-
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ticles: The initial width of the microwave spectrum in mo-
mentum space should be less than the standard deviation of
the initial longitudinal distributionf29g. The condition in
mathematical form,

dv

ki

,
Îkpz

2l
m

, s87d

where dv=g /2 is the frequency width of the microwave
spectrum, implies that a smaller frequency width of the mi-
crowave spectrum gives a lower temperature of the final dis-
tribution. However, if the initial frequency width of the mi-
crowave is too small, the number of particles involved with
the microwave may be so small that the cooling time will be
too long. So, in order to find the fastest way to cool the
particles, we should start with a larger frequency width. In
that case, the initial cooling rate will be higher, but the rate
will slow down sooner, so that it will again take too long to
reach the critical temperaturesGi <170d. Therefore, the so-
lution to the problem is to change to a smaller frequency
width at the instant that Eq.s87d is broken, in order to allow
the electrons to continue to cool.

VIII. ASYMPTOTIC BEHAVIOR OF LONGITUDINAL
DISTRIBUTION

As mentioned previously, applying a microwave with
Doppler-shifted resonance frequency to electrons causes lon-
gitudinal cooling as they lose their longitudinal momenta.
The cooling continues until most of electrons escape from
the range of the strong microwave in longitudinal momen-
tum space, interacting instead with the weak microwave in
the low longitudinal momentum range. In this case, the dif-
fusion coefficient of the Fokker-Planck equation is almost
constant in the range, and the dominant term of the dissipa-
tive coefficient is proportional to momentum,pz. These two
coefficients leads the longitudinal distribution of the elec-
trons to a Gaussian distribution in the weak microwave
range. The two distributions,f0spzd and f1spzd, also become
Gaussian distributions in the range. So, one distribution au-
tomatically has to be decided by the relation

f1spzd
f0spzd

< n01, s88d

wheren01 is the ratio between the ground and first excited
state,N1/N0.

The relation in Eq.s88d with Eq. s58d gives another
Fokker-Planck equation in weak microwave range, which
has a different form from the Fokker-Planck equation that we
derived previously. Both Fokker-Planck equations have two
coefficients, dissipative and diffusion coefficients. The two
coefficients are represented as functions of the intensity of
the microwave, the microwave cavity factor and the relative
detuning frequency from the gyrofrequency,Dv sDv;V
−vd. The intensity of the microwave that is required to keep
a constant ratio,n01, can be obtained from the comparison of
two dissipative coefficients of those two Fokker-Planck
equations in the weak microwave range. The intensity can be
represented as a function of the microwave cavity factor,Q,

andDv. Applying the intensity that we obtained to the coef-
ficients of the Fokker-Planck equation in weak microwave
range, we can also obtain the stationary temperature and the
asymptotic cooling rate as functions ofQ andDv.

For more general analysis in the weak microwave range,
we have used dimensionless quantities instead ofQ andDv.
The new dimensionless quantities are

1

Q̄
;

mg

k0pT
, s89ad

P̄ ;
Dv

g/2
, s89bd

where 1/Q̄ represents the relative frequency-width of the
microwave spectrum to the standard deviation of the initial
plasma profile in the dimensionless momentum space. With
the aid of these definitions, another parameter as a combina-
tion of the above two parameters can be introduced for com-

putational convenience. The new parameter,P̄/2Q̄, repre-
sents the central position of the microwave spectrum as the
unit of standard deviation of the initial plasma profile in the

dimensionless momentum space. For the set ofsQ̄, P̄/2Q̄d,
the cooling rates and transverse temperatures can be calcu-
lated.

In the low momentum range where the intensity of micro-
wave is very weak,ws

Tspzd andDwsspzd become

ws
Tspzd < −

Is0

"V

2

1 + P̄2
, s90ad

Dwsspzd <
Is0

"V

8P̄Q̄

s1 + P̄2d2

pz

pT
, s90bd

to the lowest order ofpz. Applying the Eq.s88d, to Eq.s58d,
we finally obtain an asymptotic Fokker-Planck equation:

]fspzd
]t

< "k0
]

]pz
F1 − n01

1 + n01
DwsspzdfspzdG

+
"2k0

2

2

]2

]pz
2FH 1

1 + n01
fW0

Tspzd + Dwsspzdg

+
n01

1 + n01
fD0

Tspzd + DwsspzdgJ fspzdG . s91d

The first term in the right-hand side of Eq.s91d is the ap-
proximation ofK1spzd, defined in Eq.s64ad. The asymptotic
Fokker-Planck equation can be rewritten as

]fspzd
]t

< "k0
]

]pz
fK1spzdfspzdg + "2k0

2 ]

]pz
FH2spzd

]

]pz
fspzdG ,

s92d

whereK1spzd andH2spzd are determined as

K1spzd <
1 − n01

1 + n01

Is0

"V

8P̄Q̄

s1 + P̄2d2

pz

pT
, s93ad
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H2spzd < S exps− b"Vd
1 − exps− b"Vd

+ 2
Is0/"V

S0

1

1 + P̄2D 1

1 + n01

S0

2

+ S 1

1 − exps− b"Vd
+ 2

Is0/"V

S0

1

1 + P̄2D n01

1 + n01

S0

2
,

s93bd

from Eq. s90ad and Eq.s90bd. From the direct expansion of
K1spzd, defined in Eq.s64ad to the order ofpz, we get

K1spzd <
1

1 + exps− b"Vd
1 − exps− b"Vd

+ 4
Is0/"V

S0

1

1 + P̄2

3
Is0

"V

8P̄Q̄

s1 + P̄2d2

pz

pT
, s94d

whereTh is heat bath temperature andS0 is the spontaneous
decay rate. From Eq.s93ad and Eq. s94d, we obtain the
asymptotic microwave intensity for constant ratio,n01. The
asymptotic intensity is

Is0

"V
< S0

s1 + P̄2d
4

F1 + n01

1 − n01
−

1 + exps− b"Vd
1 − exps− b"VdG , s95d

which shows that the intensity can be decided only byP̄.
Equations92d can be rewritten as

]fspzd
]t

< "k0K1
]

]pz
fpzfspzdg + "2k0

2H2
]2

]pz
2 fspzd, s96d

whereK1 andH2 are

K1 <
1 − n01

1 + n01

Is0

"V

8P̄Q̄

s1 + P̄2d2

1

pT
, s97ad

H2 < S exps− b"Vd
1 − exps− b"Vd

+ 2
Is0/"V

S0

1

1 + P̄2D 1

1 + n01

S0

2

+ S 1

1 − exps− b"Vd
+ 2

Is0/"V

S0

1

1 + P̄2D n01

1 + n01

S0

2
.

s97bd

The solution of Eq.s96d is well known. If a Gaussian state is
the initial state withTi

0 as the initial longitudinal temperature,
the state is still Gaussian until it reaches a stationary state.
Only the kinetic temperature varies during the evolution.
With Ti

` as its final temperature, the solution is

fspzd =
1

Î2pkBTistd
expF−

pz
2

2kBTistd
G , s98d

where the longitudinal temperature is

Tistd = Ti
` + sTi

0 − Ti
`de−2"k0K1t. s99d

This shows thatTistd−Ti
` has 2"k0K1 as its exponent decay

rate. In other words, the exponent for logarithm to base 10 is

n = − 2"k0K1 log10e. s100d

Whatever the initial temperature is,Ti
` will be the tempera-

ture of stationary state. So,Ti
` can be determined as the

kinetic temperature of the stationary state. The stationary so-
lution of Eq. s96d implies that the temperature is

kBTi
` =

1

m

"2k0
2H2

"k0K1
. s101d

Applying the two coefficients,K1 andH2, to Eq. s101d with
Eq. s95d, we obtain the stationary temperature

kBTi
` =

FS1 + n01

1 − n01
D2

− 1G
F1 + n01

1 − n01
−

1 + exps− b"Vd
1 − exps− b"VdG

1 + P̄2

8P̄
"g, s102d

which depends onP̄, Q̄, and n01. The temperature of Eq.
s102d agrees qualitatively to Stenholm’s result for laser cool-

ing f29g. The cooling temperature is minimized atP̄=1 for

the constantQ̄.
With K1 of Eq. s97ad, the cooling rate of Eq.s100d is

n = − 2 log10e
"k0

pT

1 − n01

1 + n01

Is0

"V

8P̄Q̄

s1 + P̄2d2
. s103d

For a constantQ̄ and a constant microwave intensity without
any consideration of a constant ratio between the two trans-

verse quantum levels, the rate is maximized atP̄=1/Î3,
which is also the same as Stenholm’s resultf29g.

However, our conclusion is that the microwave intensity

should be determined byP̄ in Eq. s95d, which is obtained
from the constant ratio between two transverse quantum lev-
els. By combining Eq.s95d and Eq.s103d, the asymptotic
cooling rate is

n = − 4 log10eS0
"k0

pT

P̄Q̄

1 + P̄2
F1 −

1 − n01

1 + n01

1 + exps− b"Vd
1 − exps− b"VdG .

s104d

In the case of the constant ratio and the constantQ̄, the

maximum cooling occurs atP̄=1/Î2 instead ofP̄=1/Î3.
However, the process we have applied to find the maxi-

mum cooling rate is based on the assumption that the elec-
tron plasma profile is far from the strongly peaked micro-
wave in momentum space. On that assumption, we have
applied a linear approximation to the system. This means that

P̄/2Q̄, which represents the central position of the micro-
wave spectrum in units ofpT, is so large that most of the
electrons do not interact with the strong microwave. Also,

the frequency width of the microwave spectrum, 1/Q̄, in
units of pT, is so small that the range of the strong micro-
wave is narrow. Since more than 99% of the electrons reside

between −3pT and 3pT, P̄/2Q̄ should be roughly larger than

4. As a result of this consideration, 1/Q̄ should be roughly
larger than 8Î2, which means that the width of the micro-

J. LEE AND J. R. CARY PHYSICAL REVIEW E71, 036406s2005d

036406-14



wave is initially much larger thanpT, the thermal average
momentum of the initial longitudinal distribution. This is not
an appropriate result in reality, and the large width of the
microwave contradicts Eq.s87d initially. Therefore it seems

that maximum cooling cannot be found atP̄=1/Î2, because

P̄=1/Î2 automatically contradicts our assumption. There-
fore, the frequency width of the microwave spectrum should

be decided beforeP̄ is decided. In reality, applying the mi-
crowave once to the electrons means that the central position
of the microwave spectrum is determined initially. It should

be decided beforeP̄ is decided, on the assumption that the
frequency width of the microwave spectrum will be small. In

this case, the dependency of the cooling rate onP̄ is clearly
different from the previous results. The cooling rate of Eq.
s104d is expressed as

n = − 2 log10eS0
"k0

pT

P̄2

1 + P̄2

1

P̄/2Q̄

3F1 −
1 − n01

1 + n01

1 + exps− b"Vd
1 − exps− b"VdG , s105d

whereP̄/2Q̄ is a variable instead ofQ̄. As seen in Eq.s105d,
the cooling rate for the initially chosenP̄/2Q̄ has no maxi-

mum. AsP̄ goes to infinity, theP̄-dependent term ofn goes
to 1. This implies that the cooling rate is almost constant for

a large P̄. In other words, we do not have to consider the

P̄-dependency of the cooling rate seriously. However, a

larger P̄ implies a larger microwave intensity, as shown in
Eq. s95d. The stationary temperature in Eq.s102d is

kBTi
` =

FS1 + n01

1 − n01
D2

− 1G
F1 + n01

1 − n01
−

1 + exps− b"Vd
1 − exps− b"VdG

1 + P̄2

4P̄2

P̄

2Q̄

"k0

m
pT,

s106d

which shows that the P̄-dependency and the

P̄/2Q̄-dependency are complete inversions of those ofn.

Therefore, the smallerP̄/2Q̄ gives the higher cooling rate
and the lower stationary temperature.

IX. RESULTS OF MICROWAVE COOLING

Setting appropriate conditions for the initial state, the lon-
gitudinal temperature can be estimated after the state reaches
an equilibrium. Our system is supposed to be immersed in a
liquid helium heat bath, so that the initial temperatures
stransverse and longitudinald are 4.2 K, the temperature
of liquid helium. We apply 10 T as the magnetic field,
0.73109/cm3 as the number density of the plasma in the
trap, and at least 104 as theQ factor of the microwave cavity.
For the number densitys0.73109/cm3d, the critical tempera-
ture which givesGi=170 is approximately 14 mK.

The cooling rates of the plasma are calculated for various

values ofQ̄, P̄, and the normalized microwave intensityEs

should be determined by a constraint to keep the two level
assumption. Given 10 T as the magnetic field strength and
4.2 K as the initial temperature, the transverse temperature
should be lower than 12.0 K for over 90% of the particles to
be in the ground and the first excited state. More generally,
the temperature is determined from the rescaling condition
mentioned previously. The temperature with the condition is

T' ø 12.03
B

10
, s107d

for generalB field in tesla unit.
Now the cooling raten, defined by Eq.s82d, can be cal-

culated as a function ofQ̄ andP̄/2Q̄, with a constantB-field
and a function ofEs from the constraint. One of the results,
based on the fact that the plasma profile is a Gaussian, is
shown in Table I. As the table shows, the cooling rates have

maximums atP̄/2Q̄=2.0 for all Q̄s. In Table II, the micro-
wave intensities which give the constraint that the transverse

TABLE I. The linear cooling ratesfnsh−1dg for various values of

Q̄ and P̄ are calculated fromn<−log10sTi /T0d.

Q̄

P̄/2Q̄

0.5 1.0 1.5 2.0 2.5 3.0

1.0 0.24472 0.43393 0.56351 0.60289 0.55839 0.48058

2.0 0.28735 0.51529 0.66927 0.69143 0.60894 0.50475

3.0 0.30080 0.54520 0.70563 0.71653 0.62080 0.50980

4.0 0.30715 0.55991 0.72206 0.72659 0.62522 0.51161

5.0 0.31075 0.56825 0.73072 0.73152 0.62732 0.51246

6.0 0.31301 0.57340 0.73477 0.73529 0.62847 0.51293

7.0 0.31454 0.57679 0.73546 0.73598 0.62917 0.51321

8.0 0.31561 0.57914 0.73609 0.73710 0.62963 0.51339

9.0 0.31639 0.58082 0.73669 0.73787 0.62994 0.51352

10.0 0.31698 0.58206 0.73727 0.73842 0.63017 0.51361

TABLE II. The microwave intensitiessEsd for various values of

Q̄ and P̄, are calculated fromEs=sIs0/"Vd /S0.

Q̄

P̄/2Q̄

0.5 1.0 1.5 2.0 2.5 3.0

1.0 0.26535 0.33213 0.51747 0.90984 1.60143 2.60313

2.0 0.49788 0.69645 1.31880 2.85801 5.73339 9.87276

3.0 0.78576 1.18737 2.52114 6.01611 12.5850 21.9779

4.0 1.13730 1.81743 4.15398 10.4150 22.1709 38.9235

5.0 1.55790 2.59575 6.23124 16.0631 34.4937 60.7101

6.0 2.05140 3.52833 8.75931 22.9631 49.5540 87.3381

7.0 2.62074 4.61892 11.7413 31.1160 67.3521 118.808

8.0 3.26799 5.86992 15.1786 40.5225 87.8883 155.119

9.0 3.99462 7.28292 19.0722 51.1827 111.163 196.270

10.0 4.80183 8.85852 23.4227 63.0966 137.175 242.264
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temperature is constant are shown for the sets ofsQ̄, P̄/2Q̄d.
The smaller the number of electrons that interact with the
microwave, the larger the microwave intensity that is re-
quired to keep the same transition rate. As Table II shows, as
the central position of the microwave spectrum is farther
away from the center of the profile, and as the frequency
width of the microwave spectrum is smaller, the intensity in
the constraint is larger. From the results shown in Table I and
Table II, we can draw provisional conclusions about the
Gaussian plasma profile transition. By applying a microwave
of larger intensity and smaller frequency width to the Gauss-
ian plasma profile atpz= ±2pT of the profile, a larger transi-
tion rate can be obtained.

However, this conclusion does not apply to a long time
scale. A microwave of large intensity and small frequency
width initially creates a large transition between the two lev-
els. At the same time, the electrons within the frequency
width of the microwave spectrum lose their longitudinal mo-
menta, so that they escape from the range of the microwave.
After that, the number of electrons interacting with the mi-
crowave rapidly decreases, and there is almost no more mi-
crowave cooling, because of the large intensity and small
width. Even worse, the small frequency width of the micro-
wave spectrum causes the high speed electrons of the plasma
to remain in their original positions over a long time scale,
preventing the longitudinal temperature of the plasma from
decreasing. In order to create microwave cooling over a long
time scale, we have to apply a microwave of a large fre-
quency width to the plasma. In this case, the intensity of the
microwave should be small. Even though this does not create
the fastest cooling initially, it may cause the fastest cooling
over a long time scale. The other fact we have to consider
during a simulation is that the cooling rate depends not only

on sQ̄, P̄/2Q̄d, but also on the shape of the profile. This
means that the deformed profile as a sum of the ground and
the first excited state, as functions of time, is generally far
from a Gaussian and not predictable with only Eq.s60ad and
Eq. s60bd. The profiles as functions of time can be deter-
mined by the Fokker-Planck equation, Eq.s61d, using the
two equations Eq.s60ad and Eq.s60bd. As seen in Eq.s82d,
one of the parameters of the cooling rate is the longitudinal
temperature, which can generally be determined from the
longitudinal kinetic energy. If the profile as a function of
time had the same shape as the initial profile, we would not
need to apply the constraint forEs again after applying it
initially, because the initial constraint with the dimensionless
Fokker-Planck equation gives a general condition ofEs.
Since the profile during a simulation is generally not a
Gaussian, we should apply the constraint to the equation for
each time step during the simulation. Changing the param-
eter causes different results for the simulation.

As a result of these considerations, we will now choose a
set of parameters as an initial value of the microwave. As

shown in Table I, the cooling rate is maximized atP̄/2Q̄

=2.0 for all Q̄s. From this result, we takes2.0,2.0d as the set

of parameterssQ̄, P̄/2Q̄d. As explained before,P̄/2Q̄=2.0,
representing the central position of the microwave in veloc-
ity space, means that the center of the microwave is atp

=2pT in velocity space. Also,Q̄=2.0, representing the width
of the microwave in velocity space, means that the width of
the microwave isg /2pT in velocity space. With this set of
parameters, the microwave interacts initially with the elec-
trons in the range fromp<1.5pT to p<2.5pT. Since the
portion of the electrons outside the range,p.2.5pT, is less
than 1% of the electrons in velocity space, the microwave
causes enough cooling to leave almost no high speed elec-
trons, so cooling can be continued by changing the intensity
of the microwave. If the portion outside the range is not that
small, then high speed electrons will remain in the range,
preventing the electrons of the entire profile from being
cooled over a long time scale.

The microwave intensity has to be decided by the condi-
tion of the constant ratio between the ground and the first
excited state. As the ratio is changed, the cooling rate should
be changed. Let us consider two cases for the ratio. The first
case is that the ratio,N1/N0, during a simulation, is 0.2,
which means that only 4% of electrons are in the second or
the higher excited states. The other case is that the ratio is
0.3, which means that 9% of electrons are in the second or
the higher excited states. In order to investigate the basic

behavior of the longitudinal temperature, let us applyQ̄

=2.0, P̄/2Q̄=2.0, andN1/N0=0.2 to our simulation. In Fig.
1 and Fig. 2, the longitudinal cooling and the microwave
intensity required forN1/N0=0.2 are shown. As explained
previously, the asymptotic behavior of the longitudinal tem-
perature is clearly exponential. Actually, in Fig. 1, the entire

FIG. 1. Time evolution of the longitudinal temperature forQ̄

=2.0 andP̄/2Q̄=2.0sN1/N0=0.2d.

FIG. 2. The microwave intensity forN1/N0=0.2 whenQ̄=2.0

and P̄/2Q̄=2.0 is applied.
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behavior of the longitudinal temperature looks exponential.
The exponent of our simulation is the same as the result of

Eq. s105d, where we applyQ̄=2.0, P̄/2Q̄=2.0, and n01
=0.2. Figure 2 shows that the microwave intensity is satu-
rated asymptotically. Even though the entire behavior of the
longitudinal temperature in Fig. 1 is exponential, the micro-
wave intensity is not the same as the saturated intensity ini-
tially. This means that the asymptotic assumption discussed
previously cannot be applied to this system initially. In Fig.
2, we know that the asymptotic behavior starts approxi-
mately 1.5 h after the microwave is applied. The saturated
intensity is also the same as the result of Eq.s95d.

With the values ofQ̄, P̄/2Q̄, and Is0s determined from
the condition of the constant ratio, it still takes too long to
reach the critical temperature. From the result of our simu-
lation, the cooling time is almost 4 h. This time is unrealistic
in experiments, as a plasma profile in a Penning trap with a
high magnetic field cannot stand for such a long time. The
reason it takes too long is that the plasma profile does not
interact effectively with the microwave after a certain time.
The plasma is cooled so rapidly that the temperature reaches
the value which breaks the condition in Eq.s87d, and then
the cooling becomes much slower, because the high peaked
central frequency of the applied microwave is too far from
the plasma profile. The real intensity of the microwave ap-
plied to the plasma is too weak to cool it as rapidly as it did
before its temperature reached that value.

For this reason, we need to find another way to cool the
plasma more rapidly. At moments when the plasma breaks

the Eq.s87d, we might change the central frequency and the
frequency width of the microwave spectrum in momentum

space. This could be achieved by changingQ̄ and P̄/2Q̄.
However, according to our results, the best way to get cool-

ing is not to changeQ̄ and P̄/2Q̄ during the whole simula-
tion, but to changeIs0 at moments when the plasma breaks
the condition.

Because the microwave pushes the electrons into the
range of low longitudinal temperature, the initial Gaussian
profile will have a distortion in the range where the electrons
interact with the microwave. The cooling will be continued
until there are no more electrons in that range, and most of
electrons will move to the lower temperature range. In that
range, the microwave intensity is so small that the micro-
wave is almost linear to the velocity. The linear function
causes a linear dissipative coefficient and a constant diffu-
sion coefficient. With the aid of results from the classical
Fokker-Planck equation, we know that the electron profile
from the two coefficients will be Gaussian-like. This means
that the profile will be almost a contraction of the initial
profile. Therefore, even thoughg and Dv will be changed

whenever the plasma breaks Eq.s87d, Q̄ and P̄/2Q̄ will not
change from their initial values.

In Fig. 3 and Fig. 4, time evolutions are shown for the two

sets of sQ̄, P̄/2Q̄d and the microwave intensities. Also, in
Fig. 5 and Fig. 6, the intensities required for the condition of
a constant ratio are shown. In Table III, the times when the
parameters should be changed are determined. As we ex-
pected, the cooling times can be reduced as much as we need

FIG. 3. Time evolution of the longitudinal temperature for
N1/N0=0.2, applying the best cooling parameters whenever the
profile starts asymptotic behavior.

FIG. 4. Time evolution of the longitudinal temperature for
N1/N0=0.3.

FIG. 5. Time evolution of the microwave intensity required for
N1/N0=0.2 with the best cooling parameters.

FIG. 6. Time evolution of the microwave intensity required for
N1/N0=0.3.
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them to be. The cooling time is more than 1 h and less than
2 h for N1/N0=0.3, and is slightly more than 2 h for
N1/N0=0.2. Both times are very realistic for Penning trap
experiments.

X. CONCLUSION

We have surveyed the molecular-dynamics simulation re-
sults of a strongly magnetized plasma, and concluded that

crystallization can be achieved below a longitudinal critical
temperature irrespective of transverse temperature. Applying
a microwave in the same direction as the strong magnetic
field line, we were finally able to create a cold plasma with a
longitudinal coupling parameter over the critical value. On
the basis of a small ratio between the ground and the first
excited state, two level transition equations between the two
levels were derived. A Fokker-Planck equation was derived
from these two level transition equations. Also, we found a
rescaling equation for the cooling rate, the results of which
showed that the cooling time is proportional to the cubic of
the rescaling parameter, as the magnetic field, the microwave
intensity, and the transverse temperature are rescaled by the
same rescaling parameter. When a microwave is applied in
the longitudinal direction, the temperature can be decreased
below the critical temperature by exchange of energy be-
tween the two degrees of freedom. The results of our simu-
lations show that electron plasma crystallization can be
achieved in a Penning trap in two hours.
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